17:59, 15 июня 2021 г.

Большие данные и синхротроны: как учёные ЮФУ разрабатывают новые материалы

Фото:

Учёные ЮФУ разработали методику суперкомпьютерного анализа больших данных, получаемых в ходе экспериментов на установках мегасайенс – источниках синхротронного излучения. Это позволяет с высокой точностью наблюдать изменения структуры материалов (в том числе, золота) в ходе реальных технологических процессов.

Источники синхротронного излучения сегодня формируют мощную исследовательскую инфраструктуру для проведения исследований и разработок в области наук о материалах. С использованием синхротронов исследователи со всего мира изучают не только строение и свойства отдельного материала, но и создают новые уникальные материалы, управляют их свойствами и функциональными характеристиками, влияют на протекающие в них процессы, в том числе, на взаимодействие созданных веществ с биологическими тканями, оптимизируя их действие на раковые опухоли, вирусы и позволяя создавать новые методики диагностики.

В свою очередь, развитие исследований и разработок с использованием источников синхротронного излучения потребовало поиска ранее неизвестных эффектов и разработки совершенно новых технологий. Сегодня ученые могут проводить рентгеновские эксперименты по исследованию материалов и их свойств с временным разрешением в фемтосекунду (это миллионная часть от миллиардной части секунды). С ростом технологических возможностей синхротронов возрастают и объемы получаемых в ходе экспериментов данных. Обработка больших данных после экспериментов занимает у исследователей не один месяц, а полученные результаты не всегда позволяют сделать окончательный вывод с требуемой достоверностью.

Фото: ЦОК ЮФУ

«В формулировании своих научных приоритетов ЮФУ нацелен на получение результатов мирового уровня, в том числе в области новых материалов для низкоуглеродной энергетики будущего. Расширение научных связей, взаимодействие с ведущими мировыми и российскими центрами установок мега-класса позволяет ученым ЮФУ использовать самые современные источники синхротронного излучения для решения задач анализа фундаментальных закономерностей влияния структуры на свойства материалов. Использование методов искусственного интеллекта и машинного обучения в этой области позволяет получать уникальные практически значимые результаты и преодолевать ключевые технологические барьеры», – отметила ректор ЮФУ Инна Шевченко.

Группа исследователей ЮФУ (Международного исследовательского института интеллектуальных материалов и Института математики, механики и компьютерных наук им. И.И. Воровича) стала одной из первых в мире, кто решил применить технологии машинного обучения и искусственного интеллекта к анализу большого объема данных, получаемых в ходе экспериментов на источниках синхротронного излучения.«Мы разрабатываем материалы для применения в области катализа (ускорения химических реакций) и хранения энергии. Чтобы контролировать процесс синтеза на каждой его стадии, мы применяем рентгеновскую и оптическую спектроскопию. Так, методы машинного обучения позволяют проводить диагностику данных в режиме реального времени. Наша работа существенно повышает достоверность и точность анализа получаемых в ходе экспериментов данных» – рассказал научный руководитель направления ЮФУ Александр Солдатов.

В рамках одного из разделов исследования при оптимизации характеристик наночастиц редких металлов, например золота, учеными ЮФУ была создана база данных, содержащая большое количество теоретических спектров для различных типов наночастиц. Алгоритм машинного обучения искал численные и аналитические зависимости между структурой наночастиц (диаметр, длина) и характерными деталями спектра (положения максимумов, площади пиков и др.).

Фото: ЦОК ЮФУ

Авторы впервые оценили точность предсказания размеров и формы наночастиц золота по оптическим спектрам и разработали методику анализа смесей наночастиц разного размера. Создание подобной методики анализа оптических данных с применением технологий машинного обучения позволит существенно ускорить разработку новых материалов.

Отметим, что исследования на научных установках мега-класса в области материаловедения для наукоемких производственных технологий выделены как ключевое направление Федеральной научно-технической программы развития синхротронных и нейтронных исследований на 2019-2027 годы.

Разработкой учёных ЮФУ уже заинтересовались представители Европейского центра синхротронных исследований ESRF, которые планируют развивать систему онлайн-диагностики состояния синтезируемых материалов.

Работа опубликована в журнале J. Phys. Chem. C и поддержана Минобрнауки России в рамках государственного задания в сфере научной деятельности№ 0852-2020-0019.

 

 

#ученые #ученые юфу #суперкомпьютер #разработки #большие данные
Нашли опечатку в тексте? Выделите её и нажмите ctrl+enter
Этот сайт использует «cookies». Также сайт использует интернет-сервис для сбора технических данных касательно посетителей с целью получения маркетинговой и статистической информации. Условия обработки данных посетителей сайта см. "Политика конфиденциальности"